返回 首页

重生的我只想当学霸

关灯
护眼

第63章 天才总是特殊的(感谢大佬石中隐鱼的

加书签 上一章 目录 下一章 进书架
吾看书 www.wukanshu.com,最快更新重生的我只想当学霸!

办公室里面,当韩华问出这句话的时候,王东来就知道他是认可了这篇论文的质量。

“导师,这篇论文确实是我亲自写的,英文版还是我昨晚才翻译过来的。”

王东来神情自信,无比认真地对韩华说道。

“不好意思,这篇论文的质量很高,我只是有些不相信会是一个刚入学的新生写出来。”

韩华略有一丝歉意地对王东来说完之后,便打开了浏览器中的查重网站,开始查重起来。

他其实并不怎么相信这会是一个新生能够写出来的论文。

条理清晰,逻辑严谨,数据明确,行文简洁。

哪怕是大四学生写出这样的论文,想要写出这样一篇论文来,也需要天分和足够多的汗水,才能打磨到这个程度。

而王东来呢?

不过是一个才入学的大一新生,除去军训的两个周,真正学习的时间也不过一个多星期而已。

满打满算,在唐都交大上的课,超不过五十节。

结果就是这样的新生,就能写出这样的论文,韩华第一反应就是要么抄袭剽窃,要么就是请人代笔。

心里闪过种种猜测,查重网站的结果也出来了。

重复率0.7%。

这个结果出来,起码证实了这篇论文并没有剽窃抄袭,韩华心里松了一口气。

而接下来,最大的可能就是请人代笔。

“王东来,我认真问你,你老老实实告诉我,这篇论文真的是你一个人写的吗?没有人给你提供过大纲,或者是一些必要的帮助吗?”

韩华看着王东来,原本想要问的直接点,但是话到嘴边还是委婉了两分。

王东来如何听不出来韩华的话中之意。

看到韩华一脸认真严肃地看着自己,等着自己的回答。

王东来笑了,充满自信,神采飞扬。

“确实是我一个人写的,就在图书馆写出来的,英文版是回到宿舍之后才翻译的。”

“嗯,既然是你写的论文,那我便问问你论文里面的内容,你应该没有问题吧?”韩华再次问道。

要是一般的学生,韩华早就不管了,但是王东来却是‘钱学森实验班’的学生,学校对于这个实验班里的学生极为看重,调拨不少的资源,就是为了培养这些学生。

韩华也希望王东来是真正的天才,心里也抱有一丝渺茫的希望,所以就想到了这么一个办法。

如果这篇论文真的是王东来写出来的话,那么王东来肯定对于论文里面的内容了若指掌。

相反,如果他对于自己提出来的问题,都无法回答,那就证明王东来的论文有问题,根本不是出自他手。

“导师,您请问。”

王东来并不觉得韩华这么做,是看不上自己,或者是对自己有意见。

设身处地想想,王东来完全能够理解韩华的行为。

一个刚上大学几天的新生,就说自己要发表论文,还拿出了专业性这么强的论文,不是什么学术垃圾,第一反应自然是不信。

“好,你在论文提到的对称加密算法AES和非对称加密算法RSA,你详细讲一讲,可以吗?”韩华虽然是数学系的教授,可是对于计算机也有不浅的了解,所以就问出了这个问题。

王东来没有丝毫的犹豫,张口便解释了起来。

“AES是AdvancedEncryptionStandard的缩写,是最常见的对称加密算法。AES在密码学中又称Rijndael加密法,是白头鹰联邦政府采用的一种区块加密标准。

“它的加密公式为C=E(K,P),其中K为密钥,P为明文,C为密文。

“加密过程是首先对明文进行分组,每组的长度都是128位,然后一组一组地加密,直到所有明文都已加密。密钥的长度可以是128、192或256位。

“在加密函数E中,会执行一个轮函数,除最后一次执行不同外,前面几轮的执行是相同的。以AES-128为例,推荐加密轮数为10轮,即前9轮执行的操作相同,第10轮执行的操作与前面不同。不同的密钥长度推荐的加密轮数是不一样的……

“加密时明文按照128位为单位进行分组,每组包含16个字节,按照从上到下、从左到右的顺序排列成一个4×4的矩阵,称为明文矩阵。AES的加密过程在一个大小同样为4×4的矩阵中进行,称为状态矩阵,状态矩阵的初始值为明文矩阵的值。每一轮加密结束后,状态矩阵的值变化一次。轮函数执行结束后,状态矩阵的值即为密文的值,从状态矩阵得到密文矩阵,依次提取密文矩阵的值得到128位的密文。

“以128位密钥为例,密钥长度为16个字节,也用4×4的矩阵表示,顺序也是从上到下、从左到右。AES通过密钥编排函数把密钥矩阵扩展成一个包含44个字的密钥序列,其中的前4个字为原始密钥用于初始加密,后面的40个字用于10轮加密,每轮使用其中的4个字。密钥递归产生规则如下:

try{ggauto();} catch(ex){}

“如果i不是4的倍数,那么由等式w[i]=w[i-4]w[i-1]确定;

“如果i是4的倍数,那么由等式w[i]=w[i-4]T(w[i-1])确定;

“加密的第1轮到第9轮的轮函数一样,包括4个操作:字节代换、行位移、列混合和轮密钥加。最后一轮迭代不执行列混合。另外,在第一轮迭代之前,先将明文和原始密钥进行一次异或加密操作。

“解密过程仍为10轮,每一轮的操作是加密操作的逆操作。由于AES的4个轮操作都是可逆的,因此,解密操作的一轮就是顺序执行逆行移位、逆字节代换、轮密钥加和逆列混合。同加密操作类似,最后一轮不执行逆列混合,在第1轮解密之前,要执行1次密钥加操作。

AES加密的轮函数操作包括字节代换SubBytes、行位移ShiftRows、列混合MixColumns、轮密钥加AddRoundKey等等,每一个的步骤都是紧密相连。”

“……”

“至于非对称加密算法RSA,则是1977年三位数学家Rivest、Shamir和Adleman设计了一种算法,可以实现非对称加密,使用非对称加密算法需要生成公钥和私钥,使用公钥加密,使用私钥解密。”

“……”

王东来说的滔滔不绝,简单清楚又明了,一看就知道是真的了解这些内容。

韩华在心里其实也逐渐相信起这篇论文是王东来自己写出来的,不过还是挑了几个问题问了起来,“什么是互质关系?”

这个问题很简单,只要看过书都能知道,但是根据课程,王东来还没有学过。

“质数(primenumber)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数,如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系。互质关系不要求两个数都是质数,合数也可以和一个质数构成互质关系。”

王东来迅速地回答出来。

韩华紧接着问道:“那你再说说欧拉函数。”

“欧拉函数是指对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目,用φ(n)表示。”

“例如φ(8)=4,因为1357均和8互质。”

“若n是质数p的k次幂,除了p的倍数外,其他数都跟n互质,则数学公式为……”

“若m,n互质,则数学公式为……”

“当n为奇数时,则数学公式为……”

“当n为质数时,则数学公式为……”

对答如流,完全不像是一个刚入学的大一新生,其流利程度在韩华看来,已经不弱于一些大三学生了。

在办公室里面的三位学长,这个时候也停下了手上的动作,认真地听着王东来和鹅韩华的一问一答。

“模反元素。”

“如果两个正整数a和n互质,那么一定可以找到整数b,使得ab-1被n整除,或者说ab被n除的余数是1。这时,b就叫做a的‘模反元素’。”

“比如3和11互质,那么3的模反元素就是4,因为(3×4)-1可以被11整除。显然,模反元素不止一个,4加减11的整数倍都是3的模反元素{…,-18,-7,4,15,26,…},即如果b是a的模反元素,则b+kn都是a的模反元素。”

“那欧拉定理呢?”

“欧拉定理是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则有a^φ(n)≡1(modn)。”

“假设正整数a与质数p互质,因为φ(p)=p-1,则欧拉定理可以写成a^(p-1)≡1(modp)。”

等王东来说完之后,韩华下意识地鼓起掌来。

“好好好,我确实没想到你会给我这么大的惊喜。”

“先前,你的论文质量很高,我以为不是你写的,所以才这么问你,想看看你究竟懂不懂,倒是没想到你给了我这么大的一个惊喜。”

“你的论文没有问题,论证的过程也很完美,只不过就是有些排版上的小问题以及引用文献时的错误,这些都是小问题,稍微改一下就是了。”

“只不过,你知道你这篇论文真正的价值吗?”

韩华说完之后,便静静地看着王东来,等着他的回答。


上一章 目录 下一章